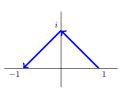
Math 444 - Homework 7

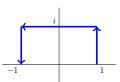
- Item 1. In this problem you will evaluate the integral $\int_{\gamma} |z|^2 dz$ where $\gamma(t)$ is the parabola $\gamma(t) = -t + i(t^2 1)$
 from t = -1 to t = 1.
 - (a) What are the real and imaginary parts of $|\gamma(t)|^2 \cdot \gamma'(t)$?

(b) Use the real and imaginary parts above to evaluate $\int_{\gamma} |z|^2 dz$.

2. Integrate the function $z - \overline{z}$ on the upper half of the unit circle from z = 1 to z = -1.


3. Find the length of the path $\gamma(t) = t + \frac{2}{3}t^{3/2}i, 0 \le t \le 3$.

4. Show that $\lim_{n\to\infty} \left| \int_{\gamma} \frac{1}{z} dz \right| = 0$ when γ is the horizontal line segment from 1 - ni to -1 - ni. Hint: One way to do this would be to calculate the integral exactly for any n. An easier alternative is to use the inequality


$$\left| \int_{\gamma} f(z) \, dz \right| \le \operatorname{length}(\gamma) \cdot \max_{z \in \operatorname{range}(\gamma)} |f(z)|.$$

Use a computer (I recommend Sympy) to calculate the following integrals.

5. $\int_{\gamma} (\overline{z})^3 dz$ on the piecewise path shown below. Hint: in Sympy the complex conjugate function is conjugate(). You'll need to parameterize each piece separately.

6. $\int_{\gamma} (\overline{z})^3 dz$ on the piecewise path shown below.

