
Dimension Reduction Workshop CS 480

When you are finished, share your Python code with me. If you are using Google Colab, share your
code with: lins.brian@gmail.com

In this workshop, we will use principal component analysis to reduce the dimension of some images,
and then use the k-nearest neighbors algorithm (with k = 1) to classify the images. First you will
need to enter the following code (which you can also copy from today’s notes on the website).

import tensorflow as tf

import matplotlib.pyplot as plt

import numpy as np

Load the data

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

Find the principal components

X = np.array([image.flatten() for image in x_train])

Q = np.cov(X.T)

d, W = np.linalg.eigh(Q)

1. Complete the following function.

def nearest(xs, ys, z):

xs is a list of numpy arrays

z is a numpy array with the same shape as each x in xs.

ys is a list of labels of the same length as xs.

returns the y value corresponding to the nearest x to z.

2. Compute a matrix Z by flattening the images in the test data like we flattened the training
data to make X. Then compress the data in X and Z by computing Xk = XWk and Zk = ZWk

where Wk is the matrix containing the last k columns of W .

3. Use the first 100 rows of Xk as the xs in the function nearest(xs, ys, z) and use the first
100 entries of y_train for the ys. Apply the nearest function to every row of Zk and find the
proportion of the predictions that are correct when k = 100, 50, 25, 10, 5. Which dimension is
the most accurate?

