Math 141 - Homework 4

Name: \qquad
Calculate the following limits exactly.

1. $\lim _{x \rightarrow 0} \frac{1}{2+\sin x}$
2. $\lim _{x \rightarrow-1} \frac{2 x-1}{x+2}$
3. $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-2 x}$
4. $\lim _{x \rightarrow 5} \frac{x^{2}-3 x-10}{x-5}$
5. $\lim _{x \rightarrow 0} \frac{\sin x}{1+\cos x}$
6. $\lim _{h \rightarrow 0} \frac{(1+h)^{2}-1}{h}$
7. Find $\lim _{h \rightarrow 0} \frac{\frac{1}{a(a+h)}-\frac{1}{a^{2}}}{h}$ where a is a non-zero constant.
8. Determine the point(s), if any, at which each of the following functions is discontinuous. Classify any discontinuity as jump, removable, infinite, or other.
(a) $f(x)=\frac{x}{x^{2}-x}$
(b) $g(x)=\cot 2 x$
(c) $h(t)=t^{-1}+1$
9. Use the formula $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ to find the derivative of $f(x)=x^{2}$ at $a=3$.
10. Expand the polynomial $(x+h)^{3}$, i.e., multiply the factors $(x+h)(x+h)(x+h)$, then use your answer to find the derivative

$$
\frac{d}{d x} x^{3}=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}
$$

11. Use the graph below to find the following derivatives, or explain why they do not exist.

(a) $f^{\prime}(-1)$
(b) $f^{\prime}(0.5)$
(c) $f^{\prime}(1)$
(d) $f^{\prime}(2)$
12. Sketch a rough graph of the derivative of the function shown in the graph below. Be sure to include numbers on the x and y-axes.

