\qquad

1. A point moves along the parabola $y=1-x^{2}$ so that its horizontal velocity is $\frac{d x}{d t}=3$ when $x=2$. Find $\frac{d y}{d t}$ at that instant.
2. Let $z^{2}=x^{2}-y^{2}$. Find $\frac{d z}{d t}$ if $x=5, y=3, \frac{d x}{d t}=-1$, and $\frac{d y}{d t}=0$.
3. Two buses are driving along parallel highways that are 5 miles apart, one heading east and the other heading west. Assuming that each bus drives a constant 60 mph , find the rate at which the distance between the buses is changing when they are 13 miles apart, heading toward each other.
4. A 25 - ft ladder is leaning against a wall. If we push the ladder toward the wall at a rate of $1 \mathrm{ft} / \mathrm{sec}$, and the bottom of the ladder is initially 20 ft away from the wall, how fast does the ladder move up the wall 5 sec after we start pushing?
5. A pump is filling a spherical balloon with 20 cubic centimeters of helium per second. How fast is the radius of the balloon increasing at the instant when the radius is 5 cm ? Hint: The volume of a sphere is $V=\frac{4}{3} \pi r^{3}$.

For each of the following functions, find the linear approximation $L(x)$ near $x=a$.
6. $f(x)=\frac{1}{x}$ at $a=10$.
7. $f(x)=x \sin x$ at $a=\pi$.
8. $f(x)=\sqrt{25-x^{2}}$ at $a=4$.
9. $f(x)=x^{3}$ at $a=-1$.

Find the differentials of the following equations.
10. $y=2 \cos x+x^{2}$
11. $P=\left(1+\frac{r}{4}\right)^{3}$

Use a linear or differential approximation to estimate the following without a calculator.
12. $\sqrt{4.16}$
13. $\frac{4}{3.9}$

