Math 141 - Homework 8

Name:

1. A point moves along the parabola $y = 1 - x^2$ so that its horizontal velocity is $\frac{dx}{dt} = 3$ when x = 2. Find $\frac{dy}{dt}$ at that instant.

2. Let
$$z^2 = x^2 - y^2$$
. Find $\frac{dz}{dt}$ if $x = 5, y = 3, \frac{dx}{dt} = -1$, and $\frac{dy}{dt} = 0$.

3. Two buses are driving along parallel highways that are 5 miles apart, one heading east and the other heading west. Assuming that each bus drives a constant 60 mph, find the rate at which the distance between the buses is changing when they are 13 miles apart, heading toward each other.

4. A 25-ft ladder is leaning against a wall. If we push the ladder toward the wall at a rate of 1 ft/sec, and the bottom of the ladder is initially 20 ft away from the wall, how fast does the ladder move up the wall 5 sec after we start pushing?

5. A pump is filling a spherical balloon with 20 cubic centimeters of helium per second. How fast is the radius of the balloon increasing at the instant when the radius is 5 cm? Hint: The volume of a sphere is $V = \frac{4}{3}\pi r^3$.

For each of the following functions, find the linear approximation L(x) near x = a.

6.
$$f(x) = \frac{1}{x}$$
 at $a = 10$.
7. $f(x) = x \sin x$ at $a = \pi$.

8.
$$f(x) = \sqrt{25 - x^2}$$
 at $a = 4$.
9. $f(x) = x^3$ at $a = -1$.

Find the differentials of the following equations.

10.
$$y = 2\cos x + x^2$$

11. $P = \left(1 + \frac{r}{4}\right)^3$

Use a linear or differential approximation to estimate the following without a calculator.

12.
$$\sqrt{4.16}$$
 13. $\frac{4}{3.9}$