

Fixed Point Iteration

Math 342

We will prove the following theorem.

Theorem. Suppose that $f \in C^2[a, b]$ has a fixed point $p \in (a, b)$. If $|f'(p)| < 1$, then for any x_0 sufficiently close to p , there is a positive constant $C < 1$ such that the recursive sequence $x_{n+1} = f(x_n)$ has

$$|x_{n+1} - p| \leq C |x_n - p| \text{ for all } n \in \mathbb{N}.$$

1. Find the 1st degree Taylor approximation for $f(x)$ centered at p including the remainder term.
2. Let $M = \max_{a \leq z \leq b} |f''(z)|$. Use the triangle inequality to find an upper bound for $|x_{n+1} - p|$, assuming that $a \leq x_n \leq b$.
3. How small does $|x_n - p|$ need to be in order to guarantee that there is a positive constant $C < 1$ such that

$$\frac{|x_{n+1} - p|}{|x_n - p|} \leq C?$$