

Math 342 Workshop - Taylor Polynomials

Name: _____

1. Write a Python program to find and sum the terms of the 20th degree Taylor polynomial to approximate e^6 . Instead of writing a for-loop, I recommend using a **list-comprehension**:

[expression for item in iterable].

Here is an example:

```
from math import *
sum([1/factorial(n) for n in range(10)])
```

2. Use the `exp` function in the Python math library to find the “exact” value of e^6 . Compare this with your Taylor polynomial approximation.
 - (a) What is the absolute error in your approximation?
 - (b) What is the relative error in your approximation?
3. Adjust your program to find the 20th degree Taylor polynomial approximation to find e^{-6} .
4. Compare your answer to the actual value of e^{-6} .
 - (a) What is the absolute error in your approximation?
 - (b) What is the relative error in your approximation?

5. Compare the following:

(a) The Maclaurin polynomial approximation for $\sin(4\pi)$ (you can pick the degree, as long as it is at least 20).

(b) $\sin(4\pi)$ according to Python (using the `sin()` function and `pi` from the `math` library).

(c) The actual value of $\sin(4\pi)$.

6. Use the Maclaurin series for $\cos x$ to find the Maclaurin series for $\cos \sqrt{x}$. Then integrate to find the Maclaurin series for $\int \cos \sqrt{x} dx$.

7. Use Python to approximate $\int_0^1 \cos \sqrt{x} dx$.