The following problems are similar to ones you might see on the midterm exam.

1. Use Newton's method to write down an iterative formula for finding the root of $f(x)=x^{3}-a$ for any constant a. If you start with the initial guess $x_{0}=\frac{1}{3} a$, then what is x_{1} ?
2. The root of $x^{3}-2$ is $\sqrt[3]{2}$, which is located in the interval $[1,2]$. If we use the bisection method to find this root, starting with the endpoints $a=1$ and $b=2$, then what is the worst case error in our estimate for the root after 10 steps?
3. Find values for the constants M and L such that $\left|f^{\prime \prime}(x)\right| \leq M$ and $\left|f^{\prime}(x)\right| \geq L$ when $f(x)=x^{3}-2$ on the interval [1, 2].
4. Based on your constants from the previous problem, and the Newton's method error formula

$$
\left|x_{n+1}-r\right| \leq\left(\frac{M}{2 L}\right)\left|x_{n}-r\right|^{2},
$$

how close to the root r would the initial guess x_{0} need to be in order to guarantee that Newton's method will converge?
5. Find the fixed points of the function $f(x)=\frac{8}{3 x-2}$.
6. What is the derivative of the function $f(x)=\frac{8}{3 x-2}$ at each fixed point? Based on the derivative, determine whether each fixed point is attracting or repelling (or not enough information).
7. Let $A=\left(\begin{array}{ccc}1 & 2 & 4 \\ 5 & 7 & 21 \\ 1 & 11 & 1\end{array}\right)$.
(a) Find the LU-decomposition of A.
(b) What is the rank of A ? Is A invertible?
(c) Compute $\|A\|_{\infty}$.
(d) Use the LU-decomposition to solve $A x=\left(\begin{array}{c}2 \\ 11 \\ -1\end{array}\right)$.
8. Suppose that $x=1.234 \times 10^{-3}$ and $y=1.225 \times 10^{-3}$ each have four significant digits. How many significant digits are there in each of the following numbers?
(a) $x+y$.
(b) $x-y$.
(c) $x y$.
(d) x / y.
9. Let $f(x)=\frac{e^{x}-1}{x}$.
(a) Find a Maclaurin polynomial for f by replacing e^{x} by its 3rd degree Maclaurin polynomial.
(b) Find a formula for the error in the previous approximation using the Taylor remainder formula. What is an upper bound for the error on $[-1,1]$?
10. If you use the secant method to find the root of $y=2^{x}-5$ starting with $x_{0}=1$ and $x_{1}=2$, what is x_{2} ?

