
Due Monday, Feb 10.

1. Convert the following NFA to a DFA. Use the method we discussed in class, where the states of the DFA correspond to subsets of the states of the original NFA. Hint: After removing states in the DFA that you can never reach, you should only need a small number of states, one of which corresponds to the empty set.



- 2. Let  $\Sigma = \{0,1\}$ . Write a one-sentence description the languages defined by the following regular expressions. For example:  $\Sigma^*1$  would be any binary string that ends with a 1.
  - (a)  $(\Sigma\Sigma)^*$ .
  - (b)  $\Sigma^* 01\Sigma^*$ .
  - (c)  $(0\Sigma^*0)|(1\Sigma^*1)$ .
  - (d)  $(00|01|11)^*$ .
- 3. Let  $\Sigma$  be the regular English alphabet  $\{a, b, c, \ldots, z\}$ . Write a regular expression that matches all strings that contain at least two vowels (i.e., a, e, i, o, u).

| 4. Find a      | a regular | expression | that | matches | each | of the | following | languages. | In all | cases, | the | alphabet | is |
|----------------|-----------|------------|------|---------|------|--------|-----------|------------|--------|--------|-----|----------|----|
| $\Sigma = \{0$ | $0, 1$ }. |            |      |         |      |        |           |            |        |        |     |          |    |

(a)  $\{w \in \Sigma^* : w \text{ contains at least three 1's.} \}$ 

(b)  $\{w \in \Sigma^* : w \text{ contains at least two 1's and exactly one 0.} \}$ 

5. Prove that if  $L \subset \Sigma^*$  is a regular language, then the complement  $\Sigma^* \backslash L$  is also a regular language. Hint: If there is a DFA  $M = (Q, \Sigma, \delta, q, F)$  that recognizes L, describe a different DFA that recognizes the complement.

6. Let  $A \subseteq \Sigma^*$  be a regular language. Define a new language REMOVE-ONE(A) to be the set

$$\{x: xyz \in A \text{ where } y \in \Sigma, z \in \Sigma^*\}.$$

In other words, REMOVE-ONE(A) is the set of all strings that can be obtained from strings in A by removing one letter. Prove that REMOVE-ONE(A) is a regular language by describing an NFA that recognizes it. Hint: Create an NFA using two copies of a DFA that recognizes A. Describe exactly how the NFA is constructed from the two DFAs.