

Math 342 Workshop - Nonlinear Systems

Name: _____

1. Consider the following system of equations.

$$\begin{aligned} xy &= 1 \\ x^2 - y^2 &= 1 \end{aligned}$$

(a) Rewrite this system as a vector equation $\mathbf{F}(\mathbf{x}) = \mathbf{0}$. What is \mathbf{F} , and what is its Jacobian matrix $\mathbf{J}(\mathbf{x})$?

(b) Use Newton's method for systems to find a solution to the system above. Write your solution to 5 significant digits. You can graph the equations above on Desmos to check your answer.

2. For any three noncolinear points in a plane, there is exactly one circle that passes through all three points. We'll use Newton's method to find an equation for a circle $(x - a)^2 + (y - b)^2 = r^2$ that is intersects the following three points: $(-5, 0)$, $(1, -3)$, and $(4, 2)$.

(a) Write down a vector equation $\mathbf{F}(\mathbf{x}) = \mathbf{0}$ for these three points with one component of \mathbf{F} for each point and with the vector $\mathbf{x} = \begin{bmatrix} a \\ b \\ r \end{bmatrix}$.

(b) What is \mathbf{F} , and what is its Jacobian matrix $\mathbf{J}(\mathbf{x})$?

(c) Use Newton's method to find the radius r and the center (a, b) of the circle that passes through all three points above. Write your answer using 5 significant digits. You can check your answer by graphing the circle on Desmos.